home *** CD-ROM | disk | FTP | other *** search
- MENU
- 1
- 1
- BOX
- 1
- sin(x) + cos(x/2)
- MENU
- 2
- 1
- BOX
- 2
- -2pi
- 2pi
- MENU
- 2
- 3
- MENU
- 1
- 3
- MENU
- 1
- 3
- MESSAGE
- 2
- First derivative is 0 at critical points.
- Second derivative at points of inflection.
- PAUSE
- MENU
- 1
- 8
- MENU
- 1
- 4
- BOX
- 1
- sin(x) + cos(x/2)
- BOX
- 2
- -2pi
- 2pi
- PAUSE
- MENU
- 1
- 3
- BOX
- 2
- -2pi
- 4
- MESSAGE
- 1
- Note that now the minimum is at an endpoint.
- PAUSE
- MENU
- 1
- 6
- MENU
- 1
- 5
- BOX
- 1
- sin(x) + cos(x/2)
- BOX
- 2
- -2pi
- 4pi/3
- MESSAGE
- 2
- We will now illustrate various numerical
- approximations to the area.
- PAUSE
- MENU
- 1
- 4
- MESSAGE
- 2
- Note how good Simpson's rule is
- even though we used only ten intervals!
- PAUSE
- MENU
- 1
- 7
- END
-